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(a) A person is running then takes big leap.
w/o SoPo w/ SoPo w/o SoPo w/ SoPo

(b) A man jumps from right to left.

Incline

(c) Person walks quickly down a 
short incline

w/o SoPo w/ SoPo

w/o SoPo w/ SoPo
(f) A man is running with arms 

at side.

w/o SoPo w/ SoPo
(d) The person slides to their right 3 times, 

slides to their left 4 times, and slides to 
their left 2 times.

w/o SoPo w/ SoPo
(e) A man throws an object with 
his right hand while lifting his 

right leg off the ground.

w/o SoPo w/ SoPo
(g) A person jumps in the air, then abruptly 

stumbles to his left as if he had been 
pushed, and finally he regains his balance.

w/o SoPo w/ SoPo
(i) A person kneels down onto all 
four, crawls towards the left, and 

then stands back up.

w/o SoPo w SoPo
(h) A person walks forward, briefly 
sits down, and then stands and walk 

back in the opposite direction.

(j) A person walks forward in a zig zag pattern, 
stepping over something along the way.

w/o SoPo w SoPo w/o SoPo w SoPo
(k) A person raises both their arms over their head while bending their 
elbows, they then bend their knees in a squat, and then come out of it.

Figure S1: Visual results on HumanML3D dataset. We integrate our SoPo into MDM [1] and MLD
[2], respectively. Our SoPo improves the alignment between text and motion preferences. Here, the
red text denotes descriptions inconsistent with the generated motion.

This supplementary document contains the technical proofs of results and some additional exper-4

imental results. It is structured as follows. Sec. A provides the implementation and theoretical5

analysis of our SoPo. Sec. B gives the proofs of the main results, including Theorem 1, Theorem6

2, the objective function of DSoPo, the objective function of USoPo, and theorem of SoPo for7

text-to-motion generation. Then in Sec. C presents the additional experiment information, including8

additional experimental details (Sec. C.1 and C.2) and results (Sec. C.3).9

1



A Details of SoPo for Text-to-Motion Generation10

In this section, we first examine the objective function of SoPo and argue that it presents significant11

challenges for optimization. Fortunately, we then discover and derive an equivalent form that is easier12

to optimize (Sec. A.1). Finally, we design an algorithm to optimize it and finish discussing their13

correspondence (Sec. A.2).14

A.1 Equivalent form of SoPo15

In Eq. (15) and (16), the objective function of SoPo is defined as:16

Ldiff
SoPo = Ldiff

SoPo−vu + Ldiff
SoPo−hu, (S1)

17

Ldiff
SoPo−vu = −Et∼U(0,T ),(xw,c)∼D,x1:K

π̄θ
∼π̄vu∗

θ
(·|c)Zvu(c)[

log σ
(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))]

,

Ldiff
SoPo−hu = −Et∼U(0,T ),(xw,c)∼DZhu(c)

[
log σ

(
− Tωtβw(xw)L(θ, ref, xw

t )
)]

,

(S2)

However, these objectives can not be directly optimized, since the distribution π̄vu∗
θ and π̄hu∗

θ are not18

defined explicitly. To this end, we begin by inducing its equivalent form:19

Ldiff
SoPo(θ) =− Et∼U(0,T ),(xw,c)∼D,x1:K

π̄θ
∼π̄θ(·|c)log σ

(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))

, if r(xl, c) < τ,

log σ
(
− Tωtβw(xw)L(θ, ref, xw

t )
)
, otherwise.

(S3)

where xl = argmin{xk
π̄θ

}K
k=1∼πθ

r(xk
πθ
, c).20

Proof. Recall our definition of Ldiff
SoPo(θ) in Eq. (15) and (16). Through algebraic maneuvers, we21

have:22

Ldiff
SoPo = Ldiff

SoPo−vu + Ldiff
SoPo−hu

= −Et∼U(0,T ),(xw,c)∼D,x1:K
π̄θ

∼π̄vu∗
θ

(·|c)Zvu(c)[
log σ

(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))]

− Et∼U(0,T ),(xw,c)∼DZhu(c)
[
log σ

(
− Tωtβw(xw)L(θ, ref, xw

t )
)]

= −Et∼U(0,T ),(xw,c)∼DEx1:K
π̄θ

∼π̄vu∗
θ

(·|c)Zvu(c)[
log σ

(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))]

− Et∼U(0,T ),(xw,c)∼DEx1:K
π̄θ

∼π̄hu∗
θ

(·|c)Zhu(c)
[
log σ

(
− Tωtβw(xw)L(θ, ref, xw

t )
)]

= −Et∼U(0,T ),(xw,c)∼DEx1:Kpvuπ̄θ
(x1:K

π̄θ
|c)[

log σ
(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))]

− Et∼U(0,T ),(xw,c)∼DEx1:Kphuπ̄θ
(x1:K

π̄θ
|c)

[
log σ

(
− Tωtβw(xw)L(θ, ref, xw

t )
)]

1
= −Et∼U(0,T ),(xw,c)∼DEx1:K

π̄θ
∼π̄θ(·|c)pτ (r(x

l
π̄θ
, c) < τ)[

log σ
(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))]

− Et∼U(0,T ),(xw,c)∼DEx1:K
π̄θ

∼π̄θ(·|c)pτ (r(x
l
π̄θ
, c) ≥ τ)

[
log σ

(
− Tωtβw(xw)L(θ, ref, xw

t )
)]

= −Et∼U(0,T ),(xw,c)∼D,x1:K
π̄θ

∼π̄θ(·|c)log σ
(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))

, if r(xl, c) < τ,

log σ
(
− Tωtβw(xw)L(θ, ref, xw

t )
)
, otherwise.

where
1
= holds since pπ̄vu∗

θ
(·) =

pvu
π̄θ

(·)
Zvu(c)

and pvuπ̄θ
(x1:K

π̄θ
|c) = pπ̄θ

(x1:K
π̄θ

|c) · pτ (r(xl
π̄θ
, c) ≥ τ). The23

proof is completed.24
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A.2 The process of SoPo for text-to-motion generation25

Based on the equivalent form of SoPo in Eq. (S3), we can design an algorithm to directly optimize it,26

as shown in Algorithm 1.27

Algorithm 1 SoPo for text-to-motion generation
Input: Preference dataset D; diffusion steps T ; iterations I; samples K; ref model πref ; policy πθ;

threshold τ
Output: Aligned model πθ

1: for i = 1 to I do
2: for each (xw, c) ∈ D do
3: Sample t ∼ U(0, T )
4: Sample x1:K

π̄θ
∼ π̄θ(·|c)

5: Compute S(xw) = mink cos(x
w, xk

π̄θ
)

6: xl = argmink r(x
k
πθ
, c)

7: if r(xl, c) < τ then
8: L = log σ(−Tωtβw(x

w)(L(θ, ref, xw
t )− βL(θ, ref, xl

t)))
9: else

10: L = log σ(−Tωtβw(x
w)L(θ, ref, xw

t ))
11: end if
12: Accumulate loss: Ldiff

SoPo = Ldiff
SoPo + L

13: end for
14: Update πθ using ∇θLdiff

SoPo
15: end for
16: return πθ

The SoPo optimizes a policy model πθ for text-to-motion generation through an iterative process28

guided by a reward model. In each iteration, given a preferred motion xw and a conditional code c,29

a random diffusion step t is selected, and K candidate motions are generated by πθ. The motion30

with the lowest preference score is then treated as the unpreferred motion. To determine the weight31

of the preferred motion xw, the similarities between all generated motions are computed, and the32

lowest cosine similarity value is used to calculate its weight. Finally, the loss is calculated in two33

ways, determined based on the preference scores of the unpreferred motion. If the preference score34

of the selected unpreferred motion falls below a threshold τ , it is identified as a valuable unpreferred35

motion and used for training. Otherwise, it indicates that the motions generated by the policy model36

πθ are satisfactory. In such cases, the policy model is trained exclusively on high-quality preferred37

motions, rather than on both preferred motions and relatively high-preference unpreferred motions.38

To further understand the objective function, we analyze the correspondence between the objective39

function in Eq. (S3) and Algorithm 1:40

Ldiff
SoPo(θ) =− E

(xw, c) ∼ D︸ ︷︷ ︸
Line 2

,t ∼ U(0, T )︸ ︷︷ ︸
Line 3

,x1:K
π̄θ

∼ π̄θ(·|c)︸ ︷︷ ︸
Line 4

log σ
(
− Tωt

(
βw(xw)(L(θ, ref, xw

t )− βL(θ, ref, xl
t)
))

︸ ︷︷ ︸
Line 8

, If r(xl, c) < τ,︸ ︷︷ ︸
Line 7

log σ
(
− Tωtβw(xw)L(θ, ref, xw

t )
)

︸ ︷︷ ︸
Line 10

, Otherwise︸ ︷︷ ︸
Line 9

.

(S4)

B Theories41

B.1 Proof of Theorem 142

Proof. The offline DPO based on Plackett-Luce model [3] can be denoted as:43

Loff(θ) = −E(x1:K ,c)∼D

[
log

K∏
k=1

exp(βhθ(x
k, c))∑K

j=k exp(βhθ(xj , c))

]
, (S5)
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where hθ(x, c) = log πθ(x|c)
πref(x|c) . Then we have:44

Loff(θ) = −E(x1:K ,c)∼D

[
log

K∏
k=1

exp(βhθ(x
k, c))∑K

j=k exp(βhθ(xj , c))

]
= −Ec∼D,x1:K pgt(x

1:K |c)
[
log

K∏
k=1

exp(βhθ(x
k, c))∑K

j=k exp(βhθ(xj , c))

]

= −Ec∼D,x1:K pgt(x
1:K |c)

[
log

K∏
k=1

exp(β log πθ(x
k|c)

πref (xk|c) )∑K
j=k exp(β log πθ(xj |c)

πref (xj |c) )

]

= −Ec∼D,x1:K pgt(x
1:K |c)

[
log

K∏
k=1

exp log( πθ(x
k|c)

πref (xk|c) )
β)]∑K

j=k exp log(
πθ(xj |c)
πref (xj |c) )

β

]

= −Ec∼D,x1:K pgt(x
1:K |c)

[
log

K∏
k=1

( πθ(x
k|c)

πref (xk|c) )
β∑K

j=k(
πθ(xj |c)
πref (xj |c) )

β︸ ︷︷ ︸
pθ(xk|c)

]

= −Ec∼D,x1:K pgt(x
1:K |c)

[
log

K∏
k=1

pθ(x
k|c)︸ ︷︷ ︸

pθ(x1:K |c)

]

= −Ec∼D,x1:K pgt(x
1:K |c)

[
log pθ(x

1:K |c)− log pgt(x
1:K |c) + log pgt(x

1:K |c)
]

= Ec∼D,x1:K pgt(x
1:K |c)

[
log

pgt(x
1:K |c)

pθ(x1:K |c)
− log pgt(x

1:K |c)
]

= Ec∼D,x1:K DKL(pgt|pθ)− pgt(x
1:K |c) log pgt(x1:K |c)

(S6)

Therefore, we have:45

∇θLoff(θ) =Ec∼D,x1:K∇θDKL(pgt||pθ). (S7)

The proof is completed.46

B.2 Proof of Theorem 247

Proof. Inspired by [4], we replace the one-hot vector in DPO with Plackett-Luce model [3], and then48

the online DPO can be expressed as49

LDPO−On(θ) = −Ec∼D,x1:K∼π̄θ(·|c)

[ K∑
k=1

pr(xk|c) log
( πθ(x

k|c)
πref(xk|c) )

β∑K
j=k(

πθ(xj |c)
πref(xj |c) )

β

]
, (S8)
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where pr(x
k
π̄θ
|c) =

exp r(xk
π̄θ

,c)∑K
i=k exp r(xi

π̄θ
,c)

.Then we have:50

Lon(θ) = −Ec∼D,x1:K∼π̄θ(·|c)

[ K∑
k=1

pr(xk|c) log
( πθ(x

k|c)
πref(xk|c) )

β∑K
j=k(

πθ(xj |c)
πref(xj |c) )

β

]

= −Ec∼D pπ̄θ
(x1:K |c)

[ K∑
k=1

pr(xk|c) log
( πθ(x

k|c)
πref(xk|c) )

β∑K
j=k(

πθ(xj |c)
πref(xj |c) )

β

]

= −Ec∼D pπ̄θ
(x1:K |c)

[ K∑
k=1

pr(x
k|c) log

( πθ(x
k|c)

πref (xk|c) )
β∑K

j=k(
πθ(xj |c)
πref (xj |c) )

β︸ ︷︷ ︸
pθ(xk|c)

]

= −Ec∼D pπ̄θ
(x1:K |c)

[ K∑
k=1

pr(x
k|c) log pθ(xk|c)

]
= −Ec∼D pπ̄θ

(x1:K |c)
[ K∑
k=1

pr(x
k|c)(log pθ(xk|c)− log pr(x

k|c) + log pr(x
k|c))

]
= Ec∼D pπ̄θ

(x1:K |c)
[
DKL(pr|pθ)− pr(x

k|c) log pr(xk|c)
]

(S9)

Therefore, we have:51

∇θLon(θ) = Ec∼D∇θ pπ̄θ
(x1:K |c)DKL(pr||pθ). (S10)

The proof is completed.52

Given a sample x with a tiny generative probability pπ̄θ|c(x) → 0, and large reward value r(x, c) → 1,53

we have limpπθ
(x|c)→0,r(x,c)→1 ∇θLon = 0.54

Proof. Since x is contained in the sampled motion group x1:K , we have:55

lim
pπθ

(x|c)→0,r(x,c)→1
∇θLon

= lim
pπθ

(x|c)→0,r(x,c)→1
∇θ pπ̄θ

(x1:K |c)DKL(pr||pθ)

1
= lim

pπθ
(x1:K |c)→0,r(x,c)→1

∇θ pπ̄θ
(x1:K |c)DKL(pr||pθ)

=0,

(S11)

where 1 holds since pπθ
(x1:K |c) = pπθ

(x|c)pπθ
(xM |c) ≤ pπθ

(x|c), and xM denotes a motion group56

obtained by removing the given motion x from the group x1:K , i.e., satisfying that xM = x1:K −{x}.57

The proof is completed.58

B.3 Proof of DSoPo59

Proof. Eq. (10) suggests that DSoPo samples multiple unpreferred motion candidates instead of a60

single unpreferred motion. Thus, we should first extend Eq. (9) as:61

LDSoPo(θ) =− E(xw,c)∼DEx1:K∼π̄θ(x|c) log σ
(
βHθ(x

w, xl, c)
)
, (S12)
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where xl = argmin{xk
π̄θ

}K
k=1∼πθ

r(xk
πθ
, c). Then, we have:62

LDSoPo(θ) =− E(xw,c)∼DEx1:K∼π̄θ(x|c) log σ
(
βHθ(x

w, xl, c)
)

=− E(xw,c)∼DEx1:K pπ̄θ (x
1:K |c)︸ ︷︷ ︸

Substituting with (11)

log σ
(
βHθ(x

w, xl, c)
)

=− E(xw,c)∼DEx1:K

(
pπ̄θ (x

1:K
π̄θ

|c)pτ (r(xl, c)≥τ) + pπ̄θ (x
1:K
π̄θ

|c)pτ (r(xl, c)<τ)
)
log σ

(
βHθ(x

w, xl, c)
)

=− E(xw,c)∼DEx1:K pπ̄θ (x
1:K
π̄θ

|c)pτ (r(xl, c)≥τ)︸ ︷︷ ︸
phu
π̄θ

(x1:K |c)

log σ
(
βHθ(x

w, xl, c)
)

− E(xw,c)∼DEx1:K pπ̄θ (x
1:K
π̄θ

|c)pτ (r(xl, c)<τ)︸ ︷︷ ︸
pvu
π̄θ

(x1:K |c)

log σ
(
βHθ(x

w, xl, c)
)

=− E(xw,c)∼DEx1:KZhu(c)p
hu
π̄θ

(x1:K |c) log σ
(
βHθ(x

w, xl, c)
)

− E(xw,c)∼DEx1:KZvu(c)p
vu∗
π̄θ

(x1:K |c) log σ
(
βHθ(x

w, xl, c)
)

=− E(xw,c)∼DZhu(c)Ex1:Kphu∗π̄θ
(x1:K |c) log σ

(
βHθ(x

w, xl, c)
)

− E(xw,c)∼DZvu(c)Ex1:Kpvu∗π̄θ
(x1:K |c) log σ

(
βHθ(x

w, xl, c)
)

=− E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

log σ
(
βHθ(x

w, xl, c)
)

− E(xw,c)∼DZvu(c)Ex1:K∼π̄vu∗
θ

log σ
(
βHθ(x

w, xl, c)
)

=Lvu(θ) + Lhu(θ),
(S13)

where pπ̄vu∗
θ

(·) =
pvu
π̄θ

(·)
Zvu(c)

and phu∗π̄θ
(·) =

phu
π̄θ

(·)
Zhu(c)

respectively denote the distributions of valuable63

unpreferred and high-preference unpreferred motions. The proof is completed.64

Accordingly, we rewrite Lhu(θ) and obtain the objective function of USoPo:65

LUSoPo−hu(θ) = −E(xw,c)∼DZhu(c) log σ
(
βhθ(x

w, c)
)
,

LUSoPo(θ) = LUSoPo−hu(θ) + Lvu(θ).
(S14)

Implementation Now, we discuss how to deal with the computation of Zvu(c) and Zhu(c) in our66

implementation. As discussed in Sec. A, directly optimizing the objective function Ldiff
SoPo(θ) is67

challenging, and we used Algorithm 1 optimized its equivalent form:68

Ldiff
SoPo(θ) = −Et∼U(0,T ),(xw,c)∼D,x1:K

π̄θ
∼π̄θ(·|c)log σ

(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))

, if r(xl, c) < τ,

log σ
(
− Tωtβw(xw)L(θ, ref, xw

t )
)
, otherwise.

(S15)

Similarly, we can optimize the equivalent form of UDoPo to avoid the computation of Zvu(c) and69

Zhu(c):70

LUSoPo(θ) = −E(xw,c)∼D,x1:K
π̄θ

∼π̄θ(·|c)

log σ
(
βHθ(x

w, xl, c)
)
, If r(xl, c) < τ,

log σ
(
βhθ(x

w, c)
)
, Otherwise.

(S16)

The proof of Eq. (S16) follows the same steps as the proof of Eq. (S15) in Sec. A.71

B.4 Discussion of USoPo and DSoPo72

In this section, we discuss the relationship between USoPo and DSoPo and the difference between73

their optimization. Here, USoPo and DSoPo are defined as:74

LUSoPo(θ) = −E(xw,c)∼DZhu(c) log σ
(
βhθ(x

w, c)
)
+ Lvu(θ). (S17)
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75

LDSoPo(θ) = Lvu(θ) + Lhu(θ), (S18)

Relationship between USoPo and DSoPo We begin by analyzing the size relationship between76

USoPo and DSoPo:77

LDSoPo(θ)− LUSoPo(θ)

=Lhu(θ) + E(xw,c)∼DZhu(c) log σ
(
βhθ(x

w, c)
)

=− E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

log σ
(
βHθ(x

w, xl, c)
)
+ E(xw,c)∼DZhu(c) log σ

(
βhθ(x

w, c)
)

=− E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

[
log σ

(
βHθ(x

w, xl, c)
)
− log σ

(
βhθ(x

w, c)
)]

.

(S19)
Considering that Hθ(x

w, xl, c) = hθ(x
w, c)− hθ(x

l, c) and hθ(x, c) = log πθ(x|c)
πref(x|c) , we have:78

LDSoPo(θ)− LUSoPo(θ)

=− E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

[
log σ

(
βHθ(x

w, xl, c)
)
− log σ

(
βhθ(x

w, c)
)]

=− E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

[
log

expβhθ(x
w, c)

expβhθ(xw, c) + expβhθ(xl, c)
− log

expβhθ(x
w, c)

expβhθ(xw, c) + 1

]
=− E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗

θ

[
log

expβhθ(x
w, c) + 1

expβhθ(xw, c) + expβhθ(xl, c)

]
=− E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗

θ

[
log

( πθ(x
w|c)

πref(xw|c) )
β + 1

( πθ(xw|c)
πref(xw|c) )

β + ( πθ(xl|c)
πref(xl|c) )

β

]
.

(S20)
In general, DPO focuses on reducing the generative probability of loss samples (unpreferred motions).79

Consequently, the generative probability of the policy model πθ(x
l|c) will be lower than that of80

the reference model πref(x
l|c), i.e., πθ(x

l|c) ≤ πref(x
l|c), resulting in πθ(x

l|c)
πref(xl|c) ≤ 1. Hence, the81

following relationship holds:82

πθ(x
l|c)

πref(xl|c)
≤ 1

⇒(
πθ(x

w|c)
πref(xw|c)

)β + 1 ≥ (
πθ(x

w|c)
πref(xw|c)

)β + (
πθ(x

l|c)
πref(xl|c)

)β

⇒
( πθ(x

w|c)
πref(xw|c) )

β + 1

( πθ(xw|c)
πref(xw|c) )

β + ( πθ(xl|c)
πref(xl|c) )

β
≥ 1

⇒ log
( πθ(x

w|c)
πref(xw|c) )

β + 1

( πθ(xw|c)
πref(xw|c) )

β + ( πθ(xl|c)
πref(xl|c) )

β
≥ 0

⇒−E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

[
log

( πθ(x
w|c)

πref(xw|c) )
β + 1

( πθ(xw|c)
πref(xw|c) )

β + ( πθ(xl|c)
πref(xl|c) )

β

]
︸ ︷︷ ︸

LDSoPo(θ)−LUSoPo(θ)

≤ 0

⇒LDSoPo(θ) ≤ LUSoPo(θ).

(S21)

Eq. (S21) indicates that LUSoPo is one of upper bounds of LDSoPo.83

Difference between the optimization of USoPo and DSoPo The difference between the opti-84

mization of USoPo and DSoPo can be measured by that between their objective function. Let85
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Ld(θ) = LUSoPo(θ)−LDSoPo(θ), the difference between their objective function can be denoted as:86

Ld(θ) =LUSoPo(θ)− LDSoPo(θ)

=E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

[
log

( πθ(x
w|c)

πref(xw|c) )
β + 1

( πθ(xw|c)
πref(xw|c) )

β + ( πθ(xl|c)
πref(xl|c) )

β

] 1
≥ 0

(S22)

where 1 holds due to Eq. (S21). As discussed above, the generative probability of the policy model87

πθ(x
l|c) will be lower than that of the reference model πref(x

l|c), and thus πθ(x
l|c) falls in the range88

between 0 and πref(x
l|c), i.e., 0 ≤ πθ(x

l|c) ≤ πref(x
l|c).89

Assuming that the value of πθ(x
w|c) is fixed, the value of Ld(θ) is negatively correlated with πθ(x

l|c),90

since we have:91

∇θLd(θ) =∇θ − E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

[
log

( πθ(x
w|c)

πref(xw|c) )
β + 1

( πθ(xw|c)
πref(xw|c) )

β + ( πθ(xl|c)
πref(xl|c) )

β

]
=E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗

θ
∇θ − log

[
(
πθ(x

w|c)
πref(xw|c)

)β + (
πθ(x

l|c)
πref(xl|c)

)β
]

=E(xw,c)∼DZhu(c)Ex1:K∼π̄hu∗
θ

1

( πθ(xw|c)
πref(xw|c) )

β + ( πθ(xl|c)
πref(xl|c) )

β
−∇θ(

πθ(x
l|c)

πref(xl|c)
)β

1∼−∇θ(
πθ(x

l|c)
πref(xl|c)

)β .

(S23)

where 1 holds since 1

(
πθ(xw|c)
πref(x

w|c) )
β+(

πθ(xl|c)
πref(x

l|c)
)β

> 0.92

Hence, when the generative probability of unpreferred motions πθ(x
l|c) is lower, the difference93

between the optimization of USoPo and DSoPo is larger. However, the unpreferred motions are94

sampled from the relatively high-preference distribution πhu∗
θ̄

, and thus should not be treated as95

unpreferred motions. Using LUSoPo(θ) to optimize policy model πθ instead of LDSoPo(θ) can avoid96

unnecessary optimization of these relatively high-preference unpreferred motion Ld(θ).97

B.5 Proof of Eq. (16)98

Before proving Eq. (16), we first present some useful lemmas from [5].99

Lemma 1. [5] Given a winning sample xw and a losing sample xl, the DPO denoted as100

LDPO(θ)=E(xw,xl,c)∼D

[
− log σ

(
β log

πθ(x
w|c)

πref(xw|c)
− β log

πθ(x
l|c)

πref(xl|c)

)]
. (S24)

Then the objective function for diffusion models can be denoted as:101

LDPO-Diffusion(θ) =− E(xw
0 ,xl

0)∼D log σ(βExw
1:T∼πθ(xw

1:T |xw
0 ),xl

1:T∼πθ(xl
1:T |xl

0)

[log
πθ(x

w
0:T )

πref(xw
0:T )

− log
πθ(x

l
0:T )

πref(xl
0:T )

]),
(S25)

where x∗
t denoted the noised sample x∗ for the t-th step.102

Lemma 2. [5] Given the objective function of diffusion-based DPO denoted as Eq. (S25), it has an103

upper bound LUB(θ):104

LDPO-Diffusion(θ) ≤− E(xw
0 ,xl

0)∼D,t∼U(0,T ),xw
t−1,t∼πθ(xw

t−1,t|xw
0 ),xl

t−1,t∼πθ(xl
t−1,t|xl

0)
log σ(

βT log
πθ(x

w
t−1|xw

t )

πref(xw
t−1|xw

t )
−βT log

πθ(x
l
t−1|xl

t)

πref(xl
t−1|xl

t)

)
︸ ︷︷ ︸

LUB(θ)

, (S26)

where T denotes the number of diffusion steps.105
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Lemma 3. [5] Given the objective function for diffusion model denoted as Eq. (S26), it can be106

rewritten as :107

LUB(θ) = −E(xw
0 ,xl

0)∼D,t∼U(0,T ),xw
t ∼q(xw

t |xw
0 ),xl

t∼q(xl
t|x

l
0)
log σ(−βTωt

(∥ϵ− ϵθ(x
w
t , t)∥22 − ∥ϵ− ϵref(x

w
t , t)∥22 −

(
∥ϵ− ϵθ(x

l
t, t)∥22 − ∥ϵ− ϵref(x

l
t, t)∥22

)
)),

(S27)

where x∗
t = αtx

∗
0 + σtϵ, ϵ ∼ N (0, I) is a draw from the distribution of forward process q(x∗

t |x∗
0).108

Now, we proof Eq. (16) based on these lemmas.109

Proof. This proof has three steps. In each step, we apply the three lemmas introduced above in110

succession. We begin with the loss function of SoPo for probability models:111

LSoPo(θ) =−E(xw,c)∼D,x1:K
π̄θ

∼π̄vu∗
θ

(·|c)Zvu(c)
[
log σ

(
βw(x

w)hθ(x
w, c)− βhθ(x

l, c)
)]

︸ ︷︷ ︸
LSoPo−vu(θ)

− E(xw,c)∼DZhu(c) log σ
(
βw(x

w)hθ(x
w, c)

)
︸ ︷︷ ︸

LSoPo−hu(θ)

.
(S28)

Based on Lemma 1, we can rewrite the objective function for diffusion models:112

LSoPo−Diffusion(θ) = Ldiff−ori
SoPo−vu(θ) + Ldiff−ori

SoPo−hu(θ)

Ldiff−ori
SoPo−vu(θ) =− E(xw

0 ,c)∼D,x1:K
0 ∼π̄vu∗

θ
(·|c)Zvu(c)

log σ(Exw
1:T

∼πθ(x
w
1:T

|xw
0 ),xl

1:T
∼πθ(x

l
1:T

|xl
0)
[βw(x

w
0 ) log

πθ(x
w
0:T )

πref(xw
0:T )

− β log
πθ(x

l
0:T )

πref(xl
0:T )

]),

Ldiff−ori
SoPo−hu(θ) =− E(xw

0 ,c)∼DZhu(c) log σ(Exw
1:T

∼πθ(x
w
1:T

|xw
0 )[βw(x

w) log
πθ(x

w
0:T )

πref(xw
0:T )

]),

(S29)
where x∗

t denoted the noised sample x∗ for the t-th step. According to Lemma 2, the upper bound of113

Ldiff−ori
SoPo−vu(θ) and Ldiff−ori

SoPo−hu(θ) can be denoted as:114

Ldiff−ori
SoPo−vu(θ) ≤− E(xw

0 ,c)∼D,x1:K
0 ∼π̄vu∗

θ
(·|c),t∼U(0,T ),xw

t−1,t∼πθ(x
w
t−1,t|x

w
0 ),xl

t−1,t∼πθ(x
l
t−1,t|x

l
0)

log σ

(
βw(x

w
0 )T log

πθ(x
w
t−1|xw

t )

πref(xw
t−1|xw

t )
−βT log

πθ(x
l
t−1|xl

t)

πref(xl
t−1|xl

t)

)
︸ ︷︷ ︸

Ldiff
SoPo−vu(θ)

,

Ldiff−ori
SoPo−hu(θ) ≤−E(xw

0 ,c)∼D,t∼U(0,T ),xw
t−1,t∼πθ(x

w
t−1,t|x

w
0 ) log σ

(
βw(x

w
0 )T log

πθ(x
w
t−1|xw

t )

πref(xw
t−1|xw

t )

)
︸ ︷︷ ︸

Ldiff
SoPo−hu

(θ)

,

LSoPo−Diffusion(θ) =Ldiff−ori
SoPo−vu(θ) + Ldiff−ori

SoPo−hu(θ) ≤ Ldiff
SoPo−vu(θ) + Ldiff

SoPo−hu(θ) = Ldiff
SoPo(θ).

(S30)
Applying Lemma 3 to Ldiff

SoPo−vu(θ) and Ldiff
SoPo−hu(θ) , we have115

Ldiff
SoPo−vu(θ) = −E(xw

0 ,c)∼D,x1:K
0 ∼π̄vu∗

θ
(·|c),t∼U(0,T ),xw

t ∼q(xw
t |xw

0 ),xl
t∼q(xl

t|x
l
0)

log σ

(
− Tωt

(
βw(x

w
0 )

(
∥ϵ− ϵθ(x

w
t , t)∥22 − ∥ϵ− ϵref(x

w
t , t)∥22

)
− β

(
∥ϵ− ϵθ(x

l
t, t)∥22 − ∥ϵ− ϵref(x

l
t, t)∥22

)))
,

Ldiff
SoPo−hu(θ) = −E(xw

0 ,c)∼D,t∼U(0,T ),xw
t−1,t∼πθ(x

w
t−1,t|x

w
0 )

log σ
(
− Tωtβw(x

w
0 )

(
∥ϵ− ϵθ(x

w
t , t)∥22 − ∥ϵ− ϵref(x

w
t , t)∥22

))
,

Ldiff
SoPo(θ) = Ldiff

SoPo−vu(θ) + Ldiff
SoPo−hu(θ)

(S31)
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To simplify the symbolism, the objective functions can be rewritten as:116

Ldiff
SoPo−vu = −Et∼U(0,T ),(xw,c)∼D,x1:K

π̄θ
∼π̄vu∗

θ
(·|c)Zvu(c)[

log σ
(
− Tωt

(
βw(xw)

(
L(θ, ref, xw

t )− βL(θ, ref, xl
t)
)))]

,

Ldiff
SoPo−hu = −Et∼U(0,T ),(xw,c)∼DZhu(c)[

log σ
(
− Tωtβw(xw)L(θ, ref, xw

t )
)]

,

(S32)

where L(θ, ref, xt) = L(θ, xt) − L(ref, xt), and L(θ/ref, xt) = ∥ϵθ/ref(xt, t) − ϵ∥22 denotes the117

loss of the policy or reference model. The proof is completed.118

C Experiment119

C.1 Details of Experiments on Synthetic Data120

To simulate our preference optimization framework, we design a 2D synthetic setup with predefined121

generation and reward distributions. The generator distribution πθ is modeled as a Gaussian with122

mean [−2, 1] and covariance matrix diag(2.0, 2.0). The reward model is defined as a mixture of two123

Gaussians with means [−3, 2] and [2,−2], covariances
[

1 ±0.5
±0.5 1

]
, and equal weights of 0.5.124

For the offline dataset, preferred samples are randomly drawn from the reward distribution, while125

unpreferred samples are sampled from a manually specified distribution dissimilar to the reward126

model. These are used to fine-tune the generator via offline preference optimization. For the online127

setting, we draw samples from the reference model and assign preference labels using the reward128

model to distinguish preferred and unpreferred motions. This process is repeated iteratively to129

optimize the model online.In SoPo, we combine offline preferred samples with online-generated130

unpreferred ones to perform semi-online preference optimization, thereby leveraging the strengths of131

both offline and online data.132

C.2 Additional Experimental Datails133

Datasets & Evaluation HumanML3D is derived from the AMASS [6] and HumanAct12 [7] datasets134

and contains 14,616 motions, each described by three textual annotations. All motion is split into135

train, test, and evaluate sets, composed of 23384, 1460, and 4380 motions, respectively. For both136

HumanML3D and KIT-ML datasets, we follow the official split and report the evaluated performance137

on the test set.138

We evaluate our experimental results on two main aspects: alignment quality and generation quality.139

Following prior research [8–10], we use motion retrieval precision (R-Precision) and multi-modal140

distance (MM Dist) to evaluate alignment quality, while diversity and Fréchet Inception Distance141

(FID) are employed to assess generation quality. (1) R-Precision evaluates the similarity between142

generated motion and their corresponding text descriptions. Higher values indicate better alignment143

quality. (2) MM Dist represents the average distance between the generated motion features and144

their corresponding text embedding. (3) Diversity calculates the variation in generated samples. A145

diversity close to real motions ensures that the model produces rich patterns rather than repetitive146

motions. (4) FID measures the distribution proximity between the generated and real samples in147

latent space. Lower FID scores indicate higher generation quality.148

Implementation Details For the preference alignment of MDM [1], we largely adopt the original149

implementation’s settings. The model is trained using the AdamW optimizer [11] with a cosine150

decay learning rate scheduler and linear warm-up over the initial steps. We use a batch size of 64151

and a learning rate of 10−5, with a guidance parameter of 2.5 during testing. Diffusion employs a152

cosine noise schedule with 50 steps, and an evaluation batch size of 32 ensures consistent metric153

computation. For fine-tuning MLD [2], we similarly follow its original parameter settings.154

C.3 Additional Experimental Results155

We visualize the generated motion for our SoPo. As shown in Fig. S2, our proposed approach helps156

text-to-motion models avoid frequent mistakes, such as incorrect movement direction and specific157
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up

w/o SoPo w/ SoPo

(a) A person runs to their right and then curves to the left
and continues to run then stops.

(b) A man jumps and brings both arms above his head as … and then
moves them back into the original position.

down

w/o SoPo w/ SoPo

up

down

Figure S2: Visual results on HumanML3D dataset.

semantics. Additionally, we also present additional results generated by text-to-motion models with158

SoPo, as illustrated in Fig. S1. Our proposed SoPo significantly enhances the ability of text-to-motion159

models to comprehend text semantics. For instance, in Fig. S1 (j), a model integrated with SoPo can160

successfully interpret the semantics of “zig-zag pattern”, whereas a model without SoPo struggles to161

do so.162
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